Cold fusion – The Salvage from the Energy Crisis? Published: 20.06.2008 | Author: Aquila | Category: Science In 1989 the chemistry professors Stanley Pons and Martin Fleishman reported that they had achieved cold fusion in a palladium anode emerged in a solution of sodium deuteroxide in heavy water D2O. Due to a bad exactness of their report Isco Copa Mundial Camiseta , only few other scientists managed to replicate their findings in the first place. The findings were then dismissed as due to misunderstandings and bad scientific practice, and the matter of cold fusion has since been regarded as a taboo area.
However, some scientists did manage to replicate the findings, and quietly an enormous amount of positive research findings based on experiments of a lot better quality have been published. The phenomenon is again becoming accepted as a legitimate field of research by steadily more scientists.
However, what is really going on is not well understood. Heat production David Silva Copa Mundial Camiseta , detected radiation and detected fusion products suggest that some kind of nuclear reaction or fusion takes place, but the reactions do not show the amount of radiation and the ratios of products that known hot fusion reactions do. Therefore other names of the phenomenon are often used, like Low Energy Nuclear Reactions or (LENR) or Chemically Assisted Nuclear Reactions (CANR).
WHAT IS FUSION
By fusion two or more atomic nuclei, protons or neutrons fuse together to form a new atomic nucleus. The new nucleus is held together by the strong forces between the heavy particles, protons and neutrons. These forces are so strong that they win over the repulsing electromagnetic forces between protons.
However Marco Asensio Copa Mundial Camiseta , the strong forces only work at a short distance. Therefore the nucleons (neutrons and protons) must be brought very close together. This is difficult because of the repulsing electromagnetic forces between the protons. In traditional fusion this is achieved by very high pressure and temperature in the fusing material.
The mass of a helium nucleus (consisting of two protons and two neutrons) and other light nuclei are less than the mass of the same number of free protons, neutrons or deuterium nuclei. A deuterium nucleus consists of one proton and one neutron. Heavy water contains deuterium instead of ordinary hydrogen and is therefore designed D2O. When fusion takes place, this mass difference cannot be lost. It is converted to kinetic energy and gamma radiation. Therefore fusion of protons, neutrons or kernels of the very lightest elements into heavier elements is a very potent energy source.
One has not been able to make a controlled fusion by high temperature and pressure that yields more energy than the input energy yet. The only practical way one has managed to exploit the energy from warm fusion is the hydrogen bomb.
THE PROCESS BEHIND COLD FUSION
There is no fully developed model for cold fusion yet. The hypothesis behind the phenomenon is however very simple: All particles behave according to quantum mechanical laws. These laws say that the coordinates and energy state of a particle at one point in time determine the probability of finding a particle at a place with some given coordinates at another point of time, but the exact place cannot be predicted. Actually Rodrigo Copa Mundial Camiseta , a particle can be found anywhere at that other time point, but all places do not have the same probability. Some places are very probable, and others are very improbable. Because of this, even a particle that is not in any net motion nevertheless will shift place randomly to some extend, usually very little Jordi Alba Copa Mundial Camiseta , but sometimes more.
By bringing particles and nuclei very near each other by using some force, this will happen: The quantum mechanical behaviour will as always make the particles shift their position more or less all the time, and sometimes they get near enough to let the strong nuclear forces to take action and make them fuse.
According to standard understanding of the standard theory, this cannot happen in such a degree to be detected. Still it does. Either the standard theory is not complete, or one has not learned to use the theory in a right fashion. The mathematical apparatus of the theory is so complicated Iago Aspas Copa Mundial Camiseta , that it is impossible to predict what can happen and what cannot happen with a short glance at the equations.
Cold fusion differs in many aspects from warm fusion. It is difficult to produce warm fusion of other things than one deuterium and one tritium kernel. By cold fusion, two deuterium kernels easily fuse to helium, and even fusion involving hydrogen kernels (free protons) have been reported.
Output of neutrons (n), tritium (T), protons (p) and gamma radiation has been reported by cold fusion Alberto Moreno Copa Mundial Camiseta , but not in the amount predicted by standard understanding. These are the reactions that standard understanding predicts when two deuterium kernels fuse: D聽+聽D聽–>聽3He聽+聽n, D聽+聽D聽–>聽T聽+聽p, D聽+聽D聽–>聽4He聽+聽gamma photon.
THE ORIGINAL PONS-FLEISCHMAN SYSTEM
The original experiment exerted by Pons and Fleischmann consisted of these elements: A palladium cathode, a nickel anode and a solution of sodium deuteride NaOD (20%) in heavy water D2O. Sodium deuteride is sodium hydroxide with heavy hydrogen (deuterium) in the OH- ion, and therefore designed as OD-.
When electricity was applied to this electrolytic system Sergio Ramos Copa Mundial Camiseta , deuterium atoms were produced at the cathode, and oxygen at the anode. The deuterium atoms went into the palladium crystal lattice in great extend before combining to D2.
Excess heat was then produced in the electrolytic cell, apart from the electrolytic heat. Helium, tritium and neutrons were also produced, but the latter two products not in the amounts that would have been produced in a hot fusion. Therefore the fusion reactions in the system are different